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Abstract-In the present study, three-dimensional laminar forced flow and heat transfer in the entrance 
region of helical pipes have been investigated using a fully elliptic numerical method. Laminar flow and 
heat transfer were assumed to develop from the inlet to the outlet simultaneously. The governing equations 
were solved by means of a control-volume fiuite element method. The results presented in this paper cover 
a Reynolds munber range of 25G2000, a pitch range of O&0.6, and a curvature ratio range of 0.025-0.20. 
The present elliptic numerical results are compared with previous experimental data and parabolic numeri- 
cal data. The developments of temperature field, main and secondary velocity fields, local and average 
friction factqrs, and local and average Nusselt numbers are given and discussed. It has been found that 
both the friction factor and Nusselt number are oscillatory in the entrance region of helical pipes. The 
pitch and Reynolds number exert different effects on the developments of the friction factor and Nusselt 

number than the curvature ratio. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Laminar forced flow and heat transfer in helical pipes 
with a constant circular cross section have wide appli- 
cations in heat exc’hangers, piping systems, storage 
tanks, chemical reactors, and many other engineering 
systems [ 1, 21. One of the principal features of the 
physical problem is 1 he occurrence of a secondary flow 
in planes normal to the main flow. When affected 
by finite-pitch-induced torsion, this secondary flow 
dramatically increases the difficulty of theoretical 
analysis, and causes the heat and momentum transfer 
in helical pipes to be substantially different from that 
in straight pipes, as, well as that in ordinary curved 
pipes. In contrast to the numerous studies on fully 
developed laminar flow and heat transfer in helical 
pipes, the available results on developing flow and 
heat transfer in the entrance region of helical pipes 
are relatively sparse, and the physics of the latter is 
not well understood. 

Most of the previous studies on the developing lami- 
nar flow and heat transfer in helical pipes have been 
conducted for the case of a torus, i.e. a helical pipe of 
zero pitch. Experimental measurements of the 
developing fluid flow and heat transfer include those 
presented by Dravid et al. [3], Balejova et al. [4], 
Janssen and Hoogendoorn [5], Kalb and Seader [6], 
and Austen and Soliman [A. Numerical computations 
of the developing fluid flow and heat transfer were 
reported by Patankar et al. [8], Tarbell and Samuels 
[9], Akiyama and Cheng [lo], Soh and Berger [ll], 
Padmanabhan [ 121, Acharya et al. [ 131, and Sillekens 

tAuthor to whom correspondence should be addressed. 

[14]. For the case of helical pipes with finite pitch, Liu 
and Masliyah [15] applied a finite difference method 
to investigate the developing laminar flow and heat 
transfer. The governing equation is fully parabolized 
in the axial direction. The developments of the Nusselt 
number at different Prandtl numbers and inlet con- 
ditions were reported, but the effects of curvature 
ratio, pitch, and Reynolds number on the devel- 
opment of the fluid flow and heat transfer were not 
examined separately. Moreover, as the developing 
flow inside the helical pipes was fully three-dimen- 
sional, the parabolic computation could lead to results 
of low accuracy or reality. 

The purpose of this paper is to perform a fully 
elliptic numerical computation to study laminar 
developing flow and heat transfer in helical pipes with 
finite pitch. A control-volume finite element method 
(CVFEM) of second-order accuracy is used to solve 
the governing equations for the developing fluid flow 
and heat transfer. The effects of pitch, curvature ratio, 
and Reynolds number on the developments of friction 
factors and Nusselt numbers are presented and high- 
lighted. 

MATHEMATICAL FORMULATION 

The geometry considered and the system of coor- 
dinates are depicted in Fig. 1. The circular pipe studied 
has a diameter of 2a and is coiled at a radius of R_ 
while the distance between two turns (the pitch) is 
represented by H. In Fig. 1, R is the global coordinate 
vector, and N and B are the normal and binormal 
vectors, respectively, on the center line of the helical 
pipe. The orthogonal helical coordinate system (s, r, 6) 
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NOMENCLATURE 

radius of the helical pipe [m] 
area [m’] 
specific heat [kJ (kg K))‘] 
hydraulic diameter of the helical pipe 
(2a) [ml 
fully developed average friction factor 
circumferential average friction factor 

on one cross-section (& JI’“h do) 

local friction factor on the 
circumference of a pipe 
(WO.5P&) 
pitch [ml 
coordinate direction perpendicular to 
a surface 

no inlet velocity [m s-‘1 
u, velocity component in i-direction 

(i= 1,2,3) [ms-‘1 
u, radial velocity component [m s-‘1 

velocity component in azimuthal 
direction [m s-‘1 
nondimensional axial velocity (u&) 

ind [(u~~uO)l/*/uO] 
nondlmensronal secondary velocity 

master Cartesian coordinate in i- 

fully developed average Nusselt number 
circumferential average Nusselt 
number on a cross section 

direction (i = 1, 2, 3) [ml. 

Greek symbols 

: 
angle [“I 
thermal conductivity [w (m K))‘] 

6 curvature ratio (a/%) 
6, Dirac delta function 
?, r orthogonal rectangular coordinate [m] 
e 

local Nusselt number on the 
circumference of a pipe 
[(q&,/J-,)l(T,- Tb)l 
pressure [N m-*1 
Prandtl number 
wall heat flux [w m-‘1 
radial coordinate [m] 
radius of the coil [m] 
Reynolds number @u,d,/p) 
axial coordinate [m] 
temperature [K] 
fluid bulk temperature on one cross 

section (A IO’ u, T d,4) [K] 

orthogonal azimuthal coordinate [“I 
0 nondimensional temperature 

[(T- T,)/(T,- TJI 
a nondimensional pitch [H/(27&)] 
p viscosity [kg (m s)- ‘1 
P density of fluid [kg m-9 
?v wall shear stress [N m-*1 
cp axial angle [“I 
4 any variable. 

Subscripts 
0 inlet conditions 
2nd secondary flow 
fd fully developed condition 
i, j, k general spatial indices (= 1, 2, 3) 
r, 0, s radial, azimuthal and axial directions, 
w ree~~~~~~~on. 

or (s, n, C) relative to the master Cartesian coordinate 
system (x,, x2, xg) is similar to that used by Liu and 
Masliyah [I 51 and German0 [16]. The orthogonality 
of the helical coordinate system is achieved by rotating 
the bases formed by the Frenet frame B and N around 
the s-axis with 

where tIO = constant, and b = [Rf + (H/2x)*]-“‘. A 
given point in the helical pipe can be mapped to the 
master Cartesian system through 

X = R+rcosaN+rsinaB (2) 

R = 
H 

R,coscp,R,sinrp,gcp (3) 

N = (-coscp, -sincp,O) (4) 

B = gbsina, -gbcosq,b& 
> 

. (5) 

The transformation metrics employed to set the 
helical coordinate system to be orthogonal can be 
found in the studies by Liu and Masliyah [15] and 
German0 [ 161. The orthogonal system (3, r, 0) or (s, 
q, 0, and the nonorthogonal system (s, r, a), share the 
same cross section. 

At the inlet (rp = O’), fluid at temperature To enters 
into the helical pipe at a speed of at,. The wall of 
the pipe is heated under constant temperature T,. 
Laminar flow and heat transfer develop sim- 
ultaneously downstream in the helical pipe. The flow 
is assumed to be steady and incompressible. The fully 
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Fig. II. Geometry and system of coordinates : (a) helical pipe ; (b) helical coordinate system. 

elliptic differential equations governing laminar flow 
in helical pipes can be written in tensor form as : 

Mass : 

aui=, 
ax, 

Momentum : 

& [P(z + ~)P”jui--sijP] = O C7) 

Energy : 

2 rg -pu,CT ( , > +/SD” = 0 (8) 
I I 

where 

at4 aui auj 
@‘=s z+ax_. 

I ( > I 1 
(9) 

A nonslip boundary condition was imposed on the 
wall of the helical pipe. At the inlet, uniform profiles 
for all the dependent variables are employed for sim- 
plicity as follows : 

u, = ug u, = 0 ug = 0 T = To (10) 

where u,, U, and uO are the axial, radial and azimuthal 
velocities, respectively. 

At the outlet, the diffusion flux for all variables in 
the exit direction are set to zero : 

&,Y,u,, T) = 0. (11) 

Here, n is used to represent the normal coordinate 

direction perpendicular to the outlet plane. The selec- 
tion of the outlet plane location is based on the entry 
length data on curved pipes given by Austin and 
Seader [ 17) to ensure that fully developed flow results 
can be obtained on the outlet plane. 

To represent the results, the following non- 
dimensional variables and parameters are defined : 

Red- 6=$ n=& 
P 

T,,=$ Au,TdA 
s 

T-i 
@I=; 

s 0 T,-Tw 

lJ, =; u,, = 
(u,2 +ug2)“* 

uo 

A,=& fm =&[2’hdS 
0 

w4, 1 
Nuo = rcTw_Tbj Nun, = G 

s 

2n 

Nuode (12) o 

where 6 denotes the curvature ratio, 1 the non- 
dimensional pitch, dh the hydraulic diameter (2a), fe 
and NuO the local friction factor and Nusselt number 
along the circumference of the pipe, respectively, and 
fm and Nu,,, the circumferential average friction factor 
and Nusselt number on one cross section of the pipe, 
respectively. The friction factors and Nusselt numbers 
are defined using the wall, shear stress, rW, and heat 
flux, qw, respectively. The wall shear stress, rWr is com- 
puted based on the normal velocity gradient at the 
wall, and the heat flux, qw is computed using Fourier’s 
law applied at the wall. The term 0 represents non- 
dimensional temperature, while US and U2”, denote 
nondimensional axial velocity and secondary velocity 
on one cross section, respectively. 
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NUMERICAL COMPUTATION 

The governing equations have been solved in the 
Cartesian master coordinate system with a CVFEM 
similar to that introduced by Baliga and Patankar 
[18]. The FLUENTjUNS code [19] has been used as 
the numerical solver for the present three-dimensional 
problem. As the CVFEM combines the best aspects 
of the control-volume finite difference method 
(CVFDM) and the finite element method (FEM), it 
provides the mesh flexibility of the FEM without sac- 
rificing the benefits of the CVFDM, which are robust- 
ness and economy. 

An unstructured (block-structured) nonuniform 
grid system was used to discrete the governing equa- 
tions. Figure 2 depicts the unstructured grid used for 
the three-dimensional computation. Five blocks were 
applied to form the entire helical pipe, with the central 
square block occupying 12.4% of the area on each 
cross section. The relative position of the five blocks 
to the circumference and center line of the helical pipe 
was fixed on a certain plane, and all the subsurfaces 
used to hold the blocks were created with a curve- 
driven-surface technique [20]. 

The convection term in the governing equations was 
modeled with the bounded secondary-order upwind 
scheme, which uses the upwind value and gradient to 
compute the value at the control volume face. The 
diffusion term was computed using multilinear inter- 
polating polynomials, Ni(X, Y, Z) (also referred to as 
shape function in the FEM). The final discreted 
algebraic equation for variable 4 at each node is a set 
of nominally linear equations that can be written as 

Fig. 2. Unstructured grid of the helical pipe. 

%‘h = c %bbnb + &b 
nb 

(13) 

where a, represents the center coefficient, anb denotes 
the influence coefficient for the neighbor, and csb is the 
contribution of the constant part of the source term, 
S,, in S = S,+ $4, and the boundary conditions. The 
SIMPLEC algorithm [21] was used to resolve the 
coupling between velocity and pressure. The algebraic 
equations were solved iteratively using an additive- 
correction multigrid method [22] with a Gauss-Seidel 
relaxation procedure. To accelerate convergence, the 
under-relaxation technique was applied to all depen- 
dent variables. In the present study, the under-relax- 
ation factor for p is 0.3, that for T is 1.0, and that for 
u, is 0.7. The numerical computation is considered to 
be converged when the residual summed over all the 
computational nodes at the nth iteration for variables 
4, R”,, satisfies the following criterion : 

where 4 applies for u, and T, and R$’ denotes the 
maximum residual value after rn iterations. 

A grid refinement study was conducted to determine 
an adequate grid distribution for the investigated 
physical problem. It was found that within a domain 
of 0” < cp < 270”, a nonuniform grid distribution (sec- 
tional x axial) of 500 x 160 can ensure a satisfactory 
solution for the fluid flow and heat transfer in helical 
pipes, where the sectional number refers to the total 
number of elements on one cross section (rp = con- 
stant) of the pipes. With a grid of 500 x 160 and even 
finer, the difference between the solutions for the fluid 
flow and heat transfer was in the order of approxi- 
mately 1% . Therefore, the numerical results presented 
in this paper are based on a grid system of 500 x 160 
per 270” of cp. 

All the computations in this paper were carried out 
on a Sun Sparc20 workstation in the Hemispheric 
Center for Environmental Technology at Florida 
International University. Approximately 300-350 
iterations were needed to obtain the convergence 
results. 

RESULTS AND DISCUSSION 

The following numerical results were based on the 
physical properties for water (Pr = 7.02). The fully 
developed friction factor, ffd, and the fully developed 
Nusselt number, Nufd, are defined as the asymptotic 
values of developing fs and Nus, respectively, when 
further variation offm and Nu, with axial distance are 
no more than 1%. 

Comparison with existing dutu (fully developed results) 
Due to the limited data on laminar developing con- 

vection in helical pipes of tinite pitch, especially sub- 
ject to a constant wall temperature boundary 
condition, the present predictions were compared 
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mainly with those presented in previous studies on for Nufd is almost the same as that in the experimental 
fluid flow and heat transfer in helical pipes with zero data reported by Schmidt [26]. The deviation of the 
pitch under the same boundary conditions. A typical parabolic numerical result for Nufa reported by Liu 
case for this comparison was at Re = 1000, and and Masliyah [15] from the elliptic numerical data is 
6 = 0.050. It was :found that the values predicted for about 12%. This deviation is much higher than that 
ffd and Nufd by means of the parabolic numerical for f& (about 2%), indicating that the accuracy for 
method are usually lower than those predicted by the Nufd resulting from ,parabolic computation is lower 
fully elliptic method. than it is for&. 

Table 1 provides a comparison of the present pre- 
diction for the fully developed friction factor with 
experimental data [23, 241 and parabolic numerical 
results [25]. As can be observed, the present numerical 
result for_& agrees fairly well with the experimental 
measurements, especially with those reported by Mis- 
hra and Gupta [Z!4]. The difference for ffd between 
the present elliptic: numerical result and the previous 
parabolic numerical result reported by Liu and Mas- 
liyah [25] is approximately 2%. 

Development ofJlowJiel& 

Table 2 presents a comparison of the present com- 
putation of the fully developed Nusselt number with 
previous experimental measurements [26] and theor- 
etical studies [15, 271. The correlation proposed by 
Manlapaz and Churchill [271 was based on a 
regression analysis of the data available before 1980. 
It can be observed that the present numerical result 

Typical developments of temperature, axial and sec- 
ondary velocity fields are shown in Fig. 3. On a plane 
with a small rp, a weak secondary flow is induced 
owing to the effects of curvature, with one vortex core 
appearing near the top and the other near the bottom 
of the cross section. Fluid with uniform temperature 
and axial velocity occupies most of the area of the 
cross section (the main potential core). As cp increases, 
the displacement effect of the growing boundary layer 
accelerates the flow in the main core, and the intensity 
of secondary flow increases. The unbalanced cen- 
trifugal force of the main flow results in a shift of the 
points of maximum velocity and temperature to the 
outside of the pipe. When rp is large enough, e.g. 
cp = 270”, as shown in Fig. 3(d), fluid with higher 

Table 1. Comparison of the fully developed friction factor with previous studies 

Previous study Comments 
Deviation from present elliptic 
numerical study [%] 

Srinivasan et nl. [23] Experimental study 
frd = o.4190e0~27s 
De = Re @I2 

9.4 

Mishra and Gupta [:!4] 

Liu and Masliyah [2.5] 

Experimental study 
9” l~;~+ 0.0033 (log &J4 

;n, = R:[l,S(l +,12)]-0.s 

Parabolic numerical study 
f;,, Re = [16+ (0.378Dn I?‘+ 12.l)Dr1”~ 12’~’ 
{ 1 + [(0.0908 +0.02331~‘2)Dn”2 
0.132@* +0.371,0.2]/[1+49/Dn]} 
& = %/K + (W2a)*l 
~a = (W27WR: + W/W*1 
Dn = Re Ati’, I.= vR/(& Dn)“’ 

2.03 

2.08 

Table 2. Comparison of fully developed Nusselt number with previous studies 

Previous study Comments 
Deviation from present elliptic 
numerical study [%] 

Schmidt [26] Experimental study 
Nurd = 3.65+0.08[1 +0.86°.r’jPr”3 Re” 
in = 0.5+0.29036°‘94 

0.10 

Manlapaz and Churchill [27] Analysis of available data 
Nur,, = [(3.657+4.343/CJ3+ l.158(De/C2)“Z]“3 
C, = (l.0+957De-2/Pr)2 
C2 = 1.0+0.477/Pr 

16.5 

Liu and Masliyah [ 151 Parabolic numerical study 
Nufd = 3.657+[(0.75Dn”2+0.0028Pr)Pr”8]/ 
[(l.0+0.00174Pr-3)(l.0+70.6Pr-0~6/Dn)] 

12.1 
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(a) Q,= 15” 

(b) QI = 30” 

(d) cp = 270” 

v, ‘%d 

Fig. 3. Developments of velocity and temperature fields. Re = 1000, 6 = 0.05, I = 0.6. 

temperature is circulated within the two vortex zones 
of the secondary flow, with the region between the 
two zones being of relatively lower temperature. 

As the laminar flow develops downstream from the 
inlet, the secondary flow always possesses two vortices 
over the entire developing region. As is well known, 
the flow fields are symmetric to the centerline con- 
necting the outermost and innermost points of the 
cross section when I = 0.0. For the case of Fig. 3, 
where 1 # 0, the torsion caused by the finite pitch 
results in asymmetric developing flow fields. The zones 
of higher values of US and 0 are rotated clockwisely 
toward the bottom of the cross section, and the top 
secondary flow vortex is enlarged, especially when the 
value of cp is large. 

Development of localfrictionfactor andNusselt number 
Figure 4 shows the development of the local friction 

factors and Nusselt numbers with the increase of rp on 

the circumference of the helical pipe. The data are 
plotted in the direction from bottom (r/a = - 1.0) to 
top (r/a = 1.0) of the pipe cross section. For a cross 
section at the given rp, the higher and lower values of 
fs (or Nu& at r/a = 0.0 correspond to the friction 
factors (or Nusselt numbers) at the outermost and 
innermost points of the pipe, respectively. Generally 
speaking, in the region near the inlet, the distribution 
of fs (or Nu@) on the circumference is relatively 
smooth. As the flow proceeds downstream, the 
magnitude difference offs (or NQ) between the outer 
and inner sides of the pipe increases. When cp = 15, 
30,90 and 270”, the maximum difference ratio of the 
local friction factor on a cross section, cfe,,, -fe,&/ 
fmx lOO%, is 41.2, 80.3, 104.8 and 121.5%, respec- 
tively ; and the maximum difference ratio of the local 
Nusselt number on a cross section, (Nu,,~~, - Nu~,~,J/ 
N&x lOO%, is 67.9, 128.5, 165.5 and 143.3%, 
respectively. 
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If 1= 0, the distribution offs (or Nu,) at each 
cp should be symmetric to the center line (r/a = 0.0) 
connecting the innermost and outermost points of the 
pipe. When 1 # 0 (Fig. 4,1 = 0.6), the distribution of 
fs (or Nu,) is asymmetric to the center line due to the 
effect of the finite pitch, especially in the later stages 
of flow development. Interestingly, the effect of pitch 
on the distribution offs (or NuJ is more severe on the 
outer side than that on the inside of the helical pipe. 
The location of the maximum value offs (or Nz+) has 
been found to shift as the flow proceeds downstream. 

Development of average friction factor and Nusselt 
number 

Effects of pitch. The development of the cir- 
cumferential average friction factor and Nusselt num- 
ber with axial location at different pitches is depicted 
in Fig. 5. The whole process of the development of fm 
(or Nu,) can be divided into three stages characterized 
by a substantially different nature. These are sum- 
marized below. 

(1) The early developing stage (rp < 1 So), in which fm 
(or Nu,) drops sharply as cp increases due to the rapid 
development of the flow (or thermal) boundary layer. 
(2) The oscillatory developing stage (lS” < cp < 
180”), in which obvious oscillation of f, (or Nu,) 
appears with the increase of q. 
(3) The late developing stage (cp > 180”), in which 

fm (or Nu,) varies smoothly with cp until the fully 
developed flow (or heat transfer) is established. 

It was ascertained that the oscillation offm (or Nu,) 
is a consequence of the secondary I-low. A similar 
oscillatory development of the Nusselt number was 
also found by Liu and Masliyah [ 151 and Patankar et 
al. [8] in their parabolic numerical studies of the lami- 
nar developing heat transfer in helical pipes. 

Under the computational conditions used in Fig. 5, 
two peak values of Nu,,, emerge after the early develop- 
ing stage. The number of peak values of fm appearing 
after the early developing stage depends on the value 
of 1. When the value of 1 is larger than 0.2, the number 
of peak values off, is three. Within any stage, the 
effect of pitch is to reduce the magnitude of Nu,. 
Within the early and late developing stages, the effect 
of pitch is to reduce the magnitudes off,. Within the 
oscillatory stage, the magnitude of fm at higher L may 
exceed that at lower 1, depending upon the axial 
location. 

Effects of curvature ratio. Figure 6 demonstrates the 
effect of the curvature ratio, 6, on the development of 
fm and Nu,,, under given Re and 1. The curvature ratio 
exerts a similar influence on the developing f, as it 
does on the developing Nu,,,. In the course of flow and 
heat transfer development of the helical pipe, the effect 
of 6 is to increase the magnitudes off, and Nu, at 
different axial locations. Within the examined par- 
ameter ranges, both the amplitude and frequency of 
the oscillation off, and Nu,,, are reduced with the 
increase of 6. Within the region close to the inlet, the 

laminar flow at higher 6 needs a larger axial angle to 
reach the minimum values of fm and Nu,. With the 
increase of 6, the axial location of the maximum values 
offm and Nu,,, within the oscillatory stage move down- 
stream. 

Effects of Reynolds number. The effects of the Rey- 
nolds number, Re, on the development of fm and Nu, 
are shown in Fig. 7 for the given 6 and L. When Re 
increases, the magnitude of fm at every axial location 
of the pipe decreases ; in contrast, the magnitude of 
Nu, at every axial location of the pipe increases. With 
increasing Re, the oscillation off, diminishes, but the 
oscillation of Nu, strengthens. Within the region close 
to the inlet, the axial angle required for the laminar 
flow to reach the minimum value of fm or Nu, is 
weakly affected by the variation of Re. Within the 
oscillatory stage, the axial location of maximum Nu,,, 
moves downstream with the increase of Re. Re has a 
very weak effect on the axial location of maximum 
values of fm in the oscillatory stage. 

CONCLUSIONS 

Three-dimensional developing laminar fluid flow 
and heat transfer in helical pipes with finite pitch have 
been simulated with a CVFEM. The fully elliptic 
numerical predictions in this study are quite consistent 
with existing experimental data. It has been found 
that a parabolic numerical method for this kind of 
problem results in a higher deviation in the Nusselt 
number than that in the friction factor. 

Throughout the process of flow development, the 
laminar flow inside the helical pipes maintains a two- 
vortex-type asymmetric secondary flow pattern. As 
the laminar flow develops downstream, the non- 
uniformity of the temperature field increases until two 
zones of higher temperature cover the two zones of 
recirculating secondary flow. 

The development of local friction factor or Nusselt 
number on the inner and outer sides of the helical 
pipes has been found to be different. As the flow 
proceeds downstream, the location of the maximum 
value of the local friction factor or local Nusselt num- 
ber shifts on the circumference of the helical pipe. 

As the flow proceeds downstream, both the average 
friction factor and the average Nusselt number are 
found to be oscillatory before the flow and heat trans- 
fer are fully developed. The effect of pitch is to reduce 
the magnitude of both the average friction factor and 
the average Nusselt number at different axial 
locations, except for the average friction factor in the 
oscillatory stage when the value of pitch is suIRciently 
high. 

The effect of curvature ratio on the development of 
average friction factor is similar to its effect on the 
average Nusselt number. When the curvature ratio 
decreases, the oscillations of both the friction factor 
and the Nusselt number are enhanced. 

Laminar flow at a higher Reynolds number gen- 
erates a weaker oscillation of the average friction fac- 
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tor than that at a lower Reynolds number. With the 
increase of the Reynolds number, the amplitude of 
the oscillation of average Nusselt number increases. 
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